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a b s t r a c t

A parallel approach to solve three-dimensional viscous incompressible fluid flow problems
using discontinuous pressure finite elements and a Lagrange multiplier technique is pre-
sented. The strategy is based on non-overlapping domain decomposition methods, and
Lagrange multipliers are used to enforce continuity at the boundaries between subdomains.
The novelty of the work is the coupled approach for solving the velocity–pressure-Lagrange
multiplier algebraic system of the discrete Navier–Stokes equations by a distributed memory
parallel ILU (0) preconditioned Krylov method. A penalty function on the interface con-
straints equations is introduced to avoid the failure of the ILU factorization algorithm. To
ensure portability of the code, a message based memory distributed model with MPI is
employed. The method has been tested over different benchmark cases such as the lid-driven
cavity and pipe flow with unstructured tetrahedral grids. It is found that the partition algo-
rithm and the order of the physical variables are central to parallelization performance. A
speed-up in the range of 5–13 is obtained with 16 processors. Finally, the algorithm is tested
over an industrial case using up to 128 processors. In considering the literature, the obtained
speed-ups on distributed and shared memory computers are found very competitive.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Computational fluid dynamics (CFD) models are typically based on the solution of the Navier–Stokes equations with help
of discretization schemes such as the finite volume or finite element method. In most practical situations, the mesh needs to
be highly refined to capture the physics, making the computations highly demanding in memory and time. To benefit from
the full computational potential of nowadays multi-processors machines, it is mandatory to develop a parallel solver with
distributed memory allowing the use of very refined grids that cannot be handled on a single processor. Some early devel-
opments in fluid mechanics were made by Farhat et al. [1] and Johan et al. [2]. These applications demonstrated the possi-
bility to speed-up calculation by the use of several CPU processors.

The most time-consuming part of the simulation is the solution of the algebraic system of equations. Direct solution
methods based on the LU-decomposition of the matrix and subsequent forward–backward substitution schemes are often
selected as they are very robust especially for ill-conditioned problems. Parallel variants can be found in the case of mul-
ti-frontal methods [3] or sparse Cholesky algorithms as in SuperLU software [4]. An evaluation of several solvers as PARDISO,
MA57 and BSLIB-EXT for the direct solution of large sparse linear systems can be found in Gould et al. [5]. They concluded
. All rights reserved.
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that the parallel efficiency of these methods depends on equations reordering and pivoting strategies. Aggarwal et al. [6] and
Henriksen and Keunings [7] have employed these solvers to simulate the flow of viscoelastic fluids. Unfortunately the large
memory requirements limit its use to massive parallel computing composed of hundreds of processors. Li and Demmel [4]
required 32 processors to solve a system of approximately 106 equations (40 K equations/processor).

To overcome the memory limitations, at least partly, an alternative is to use preconditioned iterative Krylov subspace
methods. With these methods several algebra operations like sparse matrix–vectors products, inner products, vector updates
and forward and backward substitutions need to be performed. Among these operations the preconditioning step is the most
critical issue. Its parallelization has been the subject of numerous investigations. Hughes et al. [8] introduced the concept of
element-by-element (EBE) preconditioners. It consists of computing the preconditioner from the element matrix avoiding
the storage of both the global matrix and preconditioner. Different variants such as the clustered-element-by-element
(CEBE), the mixed CEBE and the cluster companion (CC) preconditioners were proposed by Tezduyar and Liou [9] and Tez-
duyar et al. [10]. However, the effectiveness of the EBE technique is limited because it does not often provide a substantial
improvement in CPU time with respect to fast sequential techniques [11]. Another type of techniques include multigrid ap-
proaches, physic based preconditioning, structure base preconditioning, matrix free preconditioning which are beyond the
scope of this work. A detailed literature review about these preconditioning techniques in the context of Jacobian free New-
ton Krylov methods can be found in the work of Knoll and Keyes [12].

A preconditioner that is well known for its fast convergence rate and robustness is the incomplete factorization (ILU) pre-
conditioner; however its parallelization is very challenging due to the forward and backward substitutions. One option to
parallelize these procedures consists in reordering the variables with help of level scheduling techniques [13]. Nonetheless
the results obtained in their work showed that the approach is useful only for 4–6 processors. Ma and Saad [14] reported
similar results for multi-coloring techniques. Other approach is to combine iterative methods with domain decomposition
methods which consist in the subdivision of the original computational domain into a set of interconnected subdomains.
In this manner, internal unknowns are calculated in parallel, while the inter-processor communications is restricted to
the unknowns at the subdomain interfaces. For example, ILU preconditioners based on overlapping partitions have been
used in the case of viscoelastic fluid flows [15,16] and convection dominated flows [17,18]. Nevertheless, the data structure
required by an overlapping partition is always more difficult to handle than the one employed by a non-overlapping one.

An alternative is to use non-overlapping domain decomposition. Wille et al. [19,20] and Staff and Wille [21] used non-
overlapping domain decomposition, a priori pivoting and segregation of variables to parallelize the ILU preconditioning of
a conjugate gradient solver. Results presented for the Navier–Stokes equations showed that the speed-up is limited due
to the sequential characteristics of ILU algorithms. Other implementations based on non-overlapping partitions include
the work of Sosonkina et al. [22] who introduce the parallel algebraic recursive multilevel solver (pARMS) applicable to
sparse linear systems. The method is based on multilevel ILU techniques such as the ones presented in Saad and Zhang
[23]. Henon and Saad [24] also present a parallel hierarchical interface domain decomposition technique for general prob-
lems where unknowns are reordered in blocks depending if they are located inside the subdomains or on the interfaces. As a
Table 1
Parallel performance of ILU iterative solvers reported in the literature.

Authors Mesh structure ILU parallelization technique Number of
unknowns
(M)

(Maximum #
processors) /
(minimum #
processors)

Speed-up
for
maximum
number of
processors

Efficiency
for
maximum
number of
processors
(%)

Dutto and Habashi [13] Unstructured finite
element mesh

Level scheduling technique 0.025 8/1 2.01 25

Staff and Wille [21] Unstructured finite
element mesh

Domain decomposition technique 1 12/1 8.6 71

Henon et al. [48] Unstructured finite
element mesh

Block technique 0.5 16/1 9.8 61

Iwashita et al. [49] Structured finite
differences grid

Multicolor ordering technique 6.5 32/1 9.7 30

Iwashita et al. [49] Structured finite
differences grid

Block red–black ordering technique 6.5 32/1 14.5 45

Shen et al. [50] Structured finite
difference grid

Multilevel block technique 1 32/1 11.26 35

Henon and Saad [24] Unstructured finite
element mesh

Parallel hierarchical interface
domain decomposition technique
(PHIDAL)

0.5 128/2 18 28

Henon and Saad [24] Unstructured finite
element mesh

Parallel algebraic recursive multigrid
method (pARMS)

0.5 128/2 30 47

Ma and Saad [14] Unstructured mesh Multicolor ordering technique 0.8 512/32 6.38 39
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consequence a block diagonal matrix amenable for parallelization is obtained. Table 1 presents a summary of the speed-ups
and parallel efficiencies obtained by state-of-the-art parallel ILU iterative solvers found in the literature. It is noted the dif-
ficulty to reach ideal efficiency as the number of processors increases.

Another type of non-overlapping domain decomposition methods are based on Lagrange multipliers constraints. There
are different approaches for implementing Lagrange multiplier based methods. One is based on the elimination of the de-
grees of freedom internal to the subdomains in order to solve an interface problem by a conjugate gradient algorithm
[25–27] as in the finite element tearing and interconnecting (FETI) method of Farhat and Roux [26]. It is worth noting that
this method has been applied to incompressible flow in the work presented by Vanderstraeten and Keunings [28], Zsaki et al.
[29] and Vereecke et al. [30]. A similar approach is presented by Glowinski et al. [31] in combination with fictitious domain
methods.

In this work, we present a novel approach to parallelize an ILU iterative finite element solver for the Stokes equations
(laminar flow) using Lagrange multipliers constraints. The advantage of this approach with respect to the standard finite ele-
ment domain decomposition is shown in Fig. 1 for a 2D case. Standard finite element formulation requires communicating all
the nodes belonging to the elements located on the subdomain interface. In our approach the communication is restricted
only to the nodes that are on the subdomain interfaces allowing the reduction of inter-processor communication. Similar
ideas have been applied to solve elasticity problems [32,33]. The finite element parallel solver was implemented in POLY3D
(Rheosoft Inc.) software. The organization of the paper is as follows; in Section 2 we describe the proposed numerical model
with emphasis on the domain decomposition mathematical formulation. Section 3 presents the details about the paralleliza-
tion of the method using MPI. Section 4 shows results for three-dimensional benchmark cases as the pipe and cavity flows.
The effect of several partitioning algorithms and reordering of variables is described.

2. Parallel numerical model

2.1. One-domain variational formulation

For the sake of brevity the mathematical formulation is presented for the steady Stokes problem in a computational do-
main X with boundary @X (Fig. 2(a)).
Fig. 1.
multipl
� lr2v þ grad p ¼ f; in X; ð1Þ
divv ¼ 0; in X; ð2Þ
where v stands for the velocity, f the body force, p the pressure and l the Newtonian fluid viscosity. It is well known that
problem (1) and (2) is equivalent to finding the functions v and p from the following saddle point problem defined for any
admissible w and q functions.
inf
w2½H1

0ðXÞ�
3

sup
q2L2ðXÞ

Lðw; qÞ; in X; ð3Þ
where
Lðw; qÞ ¼ l
2

Z
X
jgradwj2dX�

Z
X

qdivwdX�
Z

X
f �wdX; in X: ð4Þ
Domain A Domain B
a

b
Domain A Domain B

Reduction in the communication for a two-domain decomposition: (a) standard finite element method and (b) finite element method with Lagrange
iers.
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Fig. 2. Three-dimensional domain X with boundary @X: (a) one partition and (b) partitioning into two subdomains X1 and X2.
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This last expression is known as the Lagrangian functional. After derivation with respect to each variable, the Euler–Lagrange
equations are obtained:
aðv;wÞ � bðw;pÞ ¼ ðf;wÞ 8w 2 ½H1
0ðXÞ�

3
; in X; ð5Þ

bðv;uÞ ¼ 0; 8 u 2 L2ðXÞ; in X; ð6Þ
where
aðv;wÞ ¼ l
Z

X
gradv � gradwdX; ð7Þ

bðv;uÞ ¼
Z

X
u � divv dX; ð8Þ
and (.,.)X is the scalar product in L2ðXÞ:
ðu;vÞX ¼
Z

X
u � vdX; 8 u;v 2 L2ðXÞ ð9Þ
in (5)–(8), w and u stand for the shape functions for the velocity and pressure, respectively.

2.2. Two-domain decomposition method with Lagrange multipliers

First, a partition of the domain is introduced. For instance, let us consider two subdomains (Fig. 2(b)). Due the decompo-
sition, the coupled problem defined by Eqs. (1) and (2) is equivalent to (10)–(13).
� lDvi þ gradpi ¼ f i; in Xi for i ¼ 1;2; ð10Þ
divvi ¼ 0; in Xi; for i ¼ 1;2; ð11Þ
v1 ¼ v2; in C; ð12Þ
@v1

@n1
¼ � @v2

@n2
; in C; ð13Þ
where ni stands for the outward normal to the parallel boundary C. Dirichlet boundary conditions are assumed on the do-
main boundary. Thus, the domain decomposition removes the strong point-wise continuity at the parallel boundary by a
weak integral condition generating extra constraints over the subdomains interfaces (Eqs. (12) and (13)). We resort to La-
grange multiplier method and constrained optimization techniques to reformulate the problem in (10)–(13) to find the solu-
tions v, p and k of the modified saddle point problem defined for any admissible w, q and l functions:
inf
w2½H1

0ðXÞ�
3

sup
q2L2ðXÞ

sup
l2½L2ðCÞ�3

Lpi
ðwi; qi;lÞ in Xi for i ¼ 1;2; ð14Þ
where,
Lpðw; q;lÞ ¼ Liðw; qÞ �
Z

C
l � ðw1 �w2ÞdC: ð15Þ
In (15) we introduce a Lagrange multiplier function l associated with the interface boundary condition. The Euler–La-
grange equations corresponding to this constrained problem are given by
aðvi;wÞ ¼ ðf i;wÞ þ bðw;piÞ þ ðk;wÞC;8 w 2 ½H1
0ðXiÞ�3; in Xi for i ¼ 1;2; ð16Þ

bðvi;uÞ ¼ 0; 8 u 2 L2ðXiÞ; in Xi for i ¼ 1;2; ð17Þ
ððv1 � v2Þ; nÞC ¼ 0; 8 n 2 ½L2ðCÞ�3 at C; ð18Þ
where n stands for the shape function of the Lagrange multiplier space. The solution of the Lagrange multiplier function k is
nothing but the jump of normal derivates at the subdomain interface [34]. To connect multiple subdomains (as in the simple
example of Fig. 3), the only valid constraints to impose are the ones where a face (edge for two-dimensional problems) con-
necting subdomains exists. Thus in our example, only the following constraints are considered.



Fig. 3. Multiple domain decomposition of a 2D computational domain X in four Xi subdomains and respective boundaries Cij.
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Z
C12

l12 � ðw1 �w2ÞdC12; ð19ÞZ
C14

l14 � ðw1 �w4ÞdC14; ð20ÞZ
C23

l23 � ðw2 �w3ÞdC23; ð21ÞZ
C34

l34 � ðw3 �w4ÞdC34: ð22Þ
This is in agreement with the discussion presented by Farhat and Roux [26] for the FETI method. As they pointed out, this
particularity helps to reduce communication between processors improving parallel computing performance.

2.3. Finite element discretization

In the present work, Pþ1 —P0 (Fig. 4(a)) [35] and Pþ2 —P1 (Fig. 4(b)) [36] tetrahedral finite elements approximations are used.
The former is an enriched version of the P1—P0 finite element. Extra degrees of freedom are added at the middle of each face
and the pressure is assumed constant at each element. The latter element approximates the velocity by continuous quadratic
shape functions, while the pressure and its gradients are computed inside each element. Both elements belong to the class of
discontinuous pressure elements that satisfy the Brezzi-Babuska condition ensuring numerical stability.

The Lagrange multiplier space K is discretized using Dirac delta functions that are defined by:
dðx� xiÞ ¼
þ1 if x ¼ xi;

0 if x – xi:

�
ð23Þ
It must be remarked that when considering the spaces in (18), the Dirac delta function is not in L2. However, in this work its
use to connect multiple subdomains at the discrete level makes sense. The use of Dirac function is inspired by the fictitious
domain method [37,38]. This is done with the purpose to simplify the discretization of the constraint in (18) allowing its
imposition point-wise, and therefore eliminating the need to compute surface integrals at the parallel boundary. Thus for
each constraint distributed over the set of nodes fxigN

i¼1 that lie over the interface between subdomains, we have,
v1ðxiÞ ¼ v2ðxiÞ; ð24Þ
where subscripts 1 and 2 stand for subdomain label.
A fully coupled approach is used to solve the set of Eqs. (16)–(18). Meaning that velocity, pressure and multipliers are

solved simultaneously. The matrix form of the problem is the following
A1 BT
1 0 0 �KT

K1

B1 0 0 0 0
0 0 A2 BT

2 KT
K2

0 0 B2 0 0
�KK1 0 KK2 0 0

2
6666664

3
7777775

U1

P1

U2

P2

K

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

F1

0
F2

0
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð25Þ
where Ai stands for the convection–diffusion matrix, Bi the matrix obtained from the incompressibility constraint, BT
i the

transpose of Bi;KKi the matrix from the interface constraint, Ui;Pi;K and Fi stand for the velocity, pressure, Lagrange mul-
tipliers and body forces, respectively.

Although the mathematical formulation is well-posed, the presence of zeros on the main diagonal makes ILU failing due
to the lack of pivoting during the ILU decomposition. To overcome this problem, we introduce penalty parameters in (25) for
both the divergence and Lagrange multipliers equations. In this way Eqs. (17) (pressure p) and (18) (Lagrange multiplier k)
are replaced by



a

b

Fig. 4. Tetrahedral finite element approximations: (a) P1+–P0 and (b) P2+–P1.
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bðvi;uÞ ¼ �ðpi;uÞ=ep; 8/h 2 Ph; in Xi for i ¼ 1;2; ð26Þ
ððv1 � v2Þ; nÞC ¼ �ðk; nÞC=ek; 8 nh 2 Kh; ð27Þ
where ep and ek are penalty parameters. According to (26) and (27), the matrix form (25) is rewritten as follows:
A1 BT
1 0 0 �KT

K1

B1 e�1
p 0 0 0

0 0 A2 BT
2 KT

K2

0 0 B2 e�1
p 0

�KK1 0 KK2 0 e�1
k

2
66666664

3
77777775

U1

P1

U2

P2

K

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

F1

0
F2

0
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: ð28Þ
In this work, penalty parameters are defined by the expressions given in (29) and (30).
ep ¼ 10�a=ql; ð29Þ
ek ¼ 10�bh=ql; ð30Þ
where a and b has been heuristically determined to be between 6 and 12. In this work, a value of 8 is taken for both param-
eters. A fixed-point Newton iterative algorithm is chosen to solve the problem in incremental form to give the two-domain
solution algorithm showed in Fig. 5. It must be remarked that only one fixed point iteration is required for linear problems.
3. Parallel implementation

The parallel implementation of the algorithm in Fig. 5 is composed of several key elements; in this section we describe the
particularities for each one of them.

3.1. Domain partitioning

To partition the computational domain several mesh partitioning schemes such as coordinate recursive bisection, multi-
level k-way [39], multilevel-KL [40] and spectral octasection partitioning method [40] were considered. Furthermore Kernig-
ham-Lin local refinement [41] and terminal propagation [42] were also investigated in combination with spectral methods.
Kernigham-Lin local refinement is nothing but a greedy local smoothing strategy, moving elements between subdomains in
an effort to reduce the amount of interfacial area. Terminal propagation is another technique that yields a partition connec-
tivity suitable for the machine architecture. In our case, we use this feature to simplify as much as possible the connectivity



Fig. 5. Two-domain fixed-point solution algorithm.
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of the partition generating stripped partitions. The multilevel k-way partitioning technique is available from Metis software
[39]. Multilevel-KL and all spectral partitioning techniques are available in Chaco software [40].

To characterize how well the work is uniformly distributed among the processors we define the load distribution that can
be computed by
load distribution ¼minðNNZÞ=maxðNNZÞ; ð31Þ
where NNZ stands for a list that contains the number of non-zero entries in each sub-matrix. The size of each sub-matrix is
determined by NNZ instead of number of equations (NEQ) because the demand of CPU and memory is directly related to
NNZ, and not to NEQ. In this way, the load distribution takes values between 0 and 1; a value of 1 corresponds to the ideal
load distribution and a value of 0 corresponds to the worst case scenario.

3.2. Krylov subspace iterative solvers

System of equations of algorithm in Fig. 5 is solved by iterative Krylov method, which is composed of parallelizable alge-
bra operations like matrix–vector products, inner products and vector updates. This approach is characterized by its low
memory requirements allowing the solution of larger number of equations per processor than with direct methods. The
choice of iterative methods for the systems arising from the finite element discretization of the Navier–Stokes equations
is restricted by the non-symmetry and non-definite positiveness properties of the matrix. Conjugate gradient method, very
efficient for symmetric matrices, become inapplicable. One should use variants based on Quasi-Minimal Residuals (QMR) or
Biconjugate Gradient Stabilized approach (BiCGSTAB).

Preconditioning is a central issue to ensure convergence. In this work, an incomplete factorization with zero fill-ins (ILU
(0)) was selected due to its well known robustness in comparison to other techniques (e.g. diagonal preconditioners), low
memory requirements and reduced operations counts with respect to their fill-in counterparts [43]. Matrix factorization
and forward–backward substitution operations on a memory distributed parallel environment has been performed based
on algorithms presented by Saad [43].

3.3. Ordering of variables

To increase the parallel efficiency the variables were reordered in blocks, depending if the equations correspond to inter-
nal, interface, pressure or Lagrange multipliers. In this way, linear algebra operations can be performed in parallel for the
internal block variables, while the inter-processor communication is only required for the interface velocity and the
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Lagrange multipliers blocks. To reduce the memory required per processor, a piece of the global matrix of (28) is build and
stored in each processor. The ordering of variables inside each sub-matrix can play a critical role in the convergence rate
behaviour of the Krylov solver as shown in Heniche et al. [44]. It consists in reordering internal velocity (Ux, Uy, Uz), interface
velocity (I), pressure (P) and Lagrange multipliers (LM) sub-blocks in each of the sub-systems that form the global system of
equations.

Five configurations were tested based on modifying the structure of the internal velocity and pressure sub-blocks. La-
grange multiplier and interface velocity sub-blocks were not modified since parallel efficiency depends on them. One option
is to keep contiguous each component of the velocity for each node in the mesh while the pressure is keep in a separate
block; this generated two orderings depending if the pressure sub-block is located after or before the interface velocity, rep-
resented as follows:
Fig. 6.
commu
UxUyUz—I—P—LM !

uintx1;uinty1;uintz1; . . . ; uintxn;uintyn;uintzn;

uifacex1; uifacey1;uifacez1; . . . ; uifacexm;uifaceym;uifacezm;

p1; . . . ;pn;

kx1; ky1; kz1; . . . ; kxm; kym; kzm:

* +
; ð32Þ

UxUyUz� P � I � LM !

uintx1;uinty1;uintz1; . . . ;uintxn;uintyn;uintzn;

p1; . . . ;pn;

uifacex1; uifacey1; uifacez1; . . . ; uifacexm; uifaceym;uifacezm;

kx1; ky1; kz1; . . . ; kxm; kym; kzm:

* +
: ð33Þ
Another variant was to consider a sub-block for each component of the velocity and pressure; this was denoted as Ux–Uy–
Uz–I–P–LM.
Ux—Uy—Uz—I—P—LM !

uintx1; . . . ; uintxn;uinty1; . . . ;uintyn; uintz1; . . . ;uintzn;

p1; . . . ;pn;

uifacex1;uifacey1; uifacez1; . . . ;uifacexm; uifaceym;uifacezm;

kx1; ky1; kz1; . . . ; kxm; kym; kzm:

* +
: ð34Þ
The opposite was to consider a single sub-block for both velocity and pressure where each component of the velocity and
pressure equations are keep adjacent for each node in the mesh; this was referred as UxUyUzP–I–LM.
UxUyUzP—I—LM !
uintx1;uinty1; uintz1;p1; . . . ;uintxn; uintyn; uintzn;pn;

uifacex1;uifacey1;uifacez1; . . . ;uifacexm;uifaceym; uifacezm;

kx1; ky1; kz1; . . . ; kxm; kym; kzm:

* +
: ð35Þ
Finally, the pressure sub-block was positioned before the internal velocity in the ordering named P–UxUyUz–I–LM.
P—UxUyUz—I—LM !
p1; . . . ; pn; uintx1; uinty1;uintz1; . . . ; uintxn; uintyn;uintzn;

uifacex1;uifacey1;uifacez1; . . . ;uifacexm; uifaceym;uifacezm;

kx1; ky1; kz1; . . . ; kxm; kym; kzm:

* +
: ð36Þ
3.4. Communication

The communication pattern is governed by the forward/backward parallel substitution algorithms presented in Saad [43]
that were adapted to the linear system in Fig. 5. They consist in two steps, the first one consists in sending the interface
velocity from subdomain i to subdomains j where j > i (forward communication). The second step requires to send the La-
grange multiplier values from subdomain i to subdomains j where j < i (backward communication). Fig. 6 presents a sche-
matic representation of this process for the case of two partitions.

In the case of multiple partitions as shown in Fig. 7, it is necessary to communicate data to only certain partitions. One
way is to communicate from the sender partition to the receivers (the ones that are related with the sender) making a
a b

Schematic representation of the communication between two subdomains: (a) forward communication for the interface velocities and (b) backward
nication for the Lagrange multipliers.



Fig. 7. Schematic representation of a domain partitioned into nine subdomains, that exemplifies the set of subdomains that define communicators for
subdomain 2 (broken line) and 3 (dotted line).
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send-receive call at each time a partition communicates to other partitions. By experience this is very inefficient procedure
in terms of communication and overhead time. A better option is to use MPI_BROADCAST routine, which allows sending data
in an optimized way from a ‘sender’ process to the rest of partitions included in the communicator. The communicator here
is defined as a collection of processes that can send messages to each other. By default MPI uses MPI_COMM_WORLD com-
municator where all the processes in the computation are included. For our application the use of a unique MPI_COMM_-
WORLD communicator in the broadcast of information would generate overhead time for the processes that are not
related to the sender. This is caused by the fact that the broadcast function would not return until all the data is send to
all receiver processes included in MPI_COMM_WORLD. To avoid this, we have defined several sets of communicators, one
per each process, which is composed of the partitions that are related between them. Fig. 7 exemplifies the set of subdomains
that compose the communicator for subdomains 2 and 3. In this way, in the case of several subdomains, broadcast opera-
tions make use of these particular communicators instead of MPI_COMM_WORLD. Thus, processes that are not related to
the sender can continue their work while processes that are connected can receive their information.
4. Three-dimensional benchmark cases

The presented numerical methodology was tested on two benchmark problems, namely the flow in a pipe and the lid-
driven cavity flow, with the purpose to analyze the effect of the shape of the geometry over the parallel performance. Since
the convective term was not considered at this point, Stokes flows (linear problems) were solved by means of the Lagrange
multiplier based parallel Conjugate Gradient Krylov solver developed in this work. Furthermore, the solutions obtained by
the CG Krylov solver were considered converged when the norm ratio between the last residual (ri) and the first residual
(r0) satisfies the following:
Table 2
Numbe

Nom

Mesh
Mesh
Mesh

Mesh
Mesh
Mesh
krik=kr0k < 10�6; ð37Þ
where k � k stands for the Euclidean norm. The initial solution for all cases was set to zero. The simulations were run on a 16
processors IBM-P690 with 64 GB of shared memory. In Section 4.1 and 4.2 Metis was used for partitioning and the variables
were UxUyUz–I–P–LM ordered.
4.1. Flow in a pipe

The partitioning for the pipe flow consisted in single connected strips where each interface connects only two subdo-
mains avoiding the multiple subdomains issue described in Section 2.2. The total number of elements, number of equations,
number of non-zero entries in the matrix and time required to solve the problem in sequential mode for each of the com-
putational grids can be found in Table 2. A characteristic of the method is the growth in size of the global system of equations
r of equations and size of the matrix for the pipe flow test case.

ination Finite element # Elements # Nodes v–p equations (�106) NNZ (�106) CPU time (min)

1 P1+–P0 100 k 338.5 k 0.7 28.7 3.30
2 200 k 646.8 k 1.4 256.8 43.28
3 400 k 1.32 M 2.9 545.9 43.87

1 P2+–P1 100 k 474.6 k 1.6 128.5 30.85
2 200 k 903.7 k 3.1 256.5 176.56
3 400 k 1.84 M 6.5 545.9 255.34
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due to the addition of Lagrange multipliers equations with respect to the number of subdomains as can be seen on Fig. 8. As
was already discussed, the partitioning was performed by means of Metis software that distributes in an almost uniform
fashion the number of elements in the subdomains. This characteristic can be better observed with help of the load balance
ratio as shown in Table 3.

Fig. 9 presents the speed-up per CG iteration with respect to the CPU time to solve the problem by a sequential ILU (0)-CG
solver. A value close to 12 was obtained with P2+–P1 element, while the maximum speed-up/iteration with P1+–P0 was
around 11.3.

It can be noted that the speed-up is not linear due to: (i) the loss of efficiency due to the matrix–vector and precondition-
ing operations because processors need to wait for data to be sent from contiguous processors to pursue the calculations;
this loss of synchronization between processors is called ‘‘overhead”; (ii) the increase in the number of conjugate gradient
iterations required to reach convergence with respect to the number of partitions (Table 4). At this stage, let us mention that
in Table 4 in going from mesh 2 to mesh 3, one may notice the strong reduction of the number of iterations to converge the
problem so that the corresponding CPU times reported in Table 2 not increase significantly although if the number of equa-
tions doubles. Also, in some cases one observes a decrease of the number of iterations as the number of partitions increases
(mesh3/P1+–P0 and mesh2/P2+–P1), but in overall, a slight increase (around 1.5 times for 16 partitions) in the number of
iterations is observed as the number of partitions increases.

The parallelization is based on the addition of Lagrange multiplier equations to the original algebraic system of equations
to connect the multiple subdomains. As a consequence, if the number of partitions increases, the problem size increases as
shown in Fig. 8. Then, one can expect the number of iterations to grow with increasing the number of partitions. The depen-
dence of the iteration number with respect to the partition number is a typical behaviour of ILU based Krylov parallel solvers
when the parallelization is made on a global reordering of the equations [1–5]. One heuristic explanation is that the different
global equations ordering produce different ILU preconditioner non-zero entries matrix profiles that affect the convergence
rate [6,7]. We will get back to this issue in Section 4.2.2.

Finally, we present in Table 5 the overall speed-up that combines both the convergence rate deterioration due to over-
head and the increment in conjugate gradient iterations with respect to the lowest CPU time we could obtain for an ILU
Fig. 8. Increase of the number of equations due to the introduction of Lagrange multiplier constraints at the interface with respect to the number of
subdomains for P1+–P0 and P2+–P1 finite element for pipe flow test case.

Table 3
Ratio between minimum and maximum number of NNZ in the subdomains for pipe flow test case.

Processors Mesh1 Mesh2 Mesh3

2 0.985 0.998 0.997
4 0.973 0.990 0.979
8 0.951 0.940 0.964
16 0.941 0.910 0.939



Fig. 9. Speed-up per ILU (0) preconditioned conjugate gradient iteration for the pipe flow test case with P1+–P0 and P2+–P1 finite elements.

Table 4
Number of conjugate gradient iterations to solve the pipe flow test case.

Processors Mesh1 Mesh2 Mesh3 Mesh1 Mesh2 Mesh3

P1þ—P0 P2þ—P1

1 284 1894 826 567 1530 1084
2 333 2913 596 615 1615 1440
4 341 2697 629 718 1793 1100
8 351 2230 623 669 1345 1146
16 372 2793 643 683 1249 1503

Table 5
Overall speed-up for pipe flow test case (CPU time in seconds in parenthesis).

Processors Mesh1 Mesh2 Mesh3 Mesh1 Mesh2 Mesh3

P1þ—P0 P2þ—P1

2 1.6 1.2 2.6 1.7 1.7 1.4
(118) (2116) (1012) (1079) (6034) (10,779)

4 2.9 2.5 4.6 2.8 3.1 3.5
(67) (1030) (572) (651) (3414) (4333)

8 5.3 5.1 8.8 5.6 7.2 6.5
(36) (504) (298) (330) (1461) (2366)

16 8.8 7.7 14.3 10.1 14.9 8.8
(21) (336) (182) (182) (709) (1734)
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(0)-CG solver running in sequential mode. The speed-up for the maximum number of partitions employed (16) varies in the
range of 8–14 leading to a parallel efficiency of 50–88%.

4.2. Lid driven cavity flow

The objective of this second example is to apply the parallel computational method developed in this work to the lid-dri-
ven cavity flow case where a more challenging hydrodynamics complexity takes place. Three unstructured meshes were em-
ployed to conduct the analysis. The Metis based partitions into 2, 4, 8, 16 subdomains are presented in Fig. 10. In comparison
to the pipe flow, this problem has the particularity that the subdomains are highly interconnected yielding several nodes
that connects multiple subdomains requiring a more complicated communication pattern. Table 6 presents the total number
of elements, number of equations, the number of non-zero entries in the matrix and time required to solve the problem in
sequential mode for each of the computational grids. Fig. 11 presents the percentage of Lagrange multiplier equations ob-



Fig. 10. Partitions generated by METIS: (a) 2 partitions, (b) 4 partitions, (c) 8 partitions, and (d) 16 partitions.

Table 6
Number of equations per mesh used and corresponding CPU time required to solve with a single processor the cavity flow test case.

Nomination Finite element # Elements # Nodes Equations (�106) NNZ (�106) CPU time (min)

Mesh1 P1+–P0 100 k 360.1 k 0.8 36.4 4.83
Mesh2 200 k 685.9 k 1.5 71.0 13.66
Mesh3 400 k 1.303 M 3.0 137.2 171.47

Mesh1 P2+–P1 100 k 498.6 k 1.8 159.7 48.63
Mesh2 200 k 947.4 k 3.5 310.6 136.49
Mesh3 400 k 1.79 M 6.7 599.4 541.60
Mesh4 800 k 3.69 M 13.9 625.9 912.35
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tained for both type of finite element discretization used in this work. It can be observed that the amount of constraints re-
quired for this case is larger than for the pipe flow since the interfacial area is considerably superior. Table 7 provides the
sub-matrices balance defined in the same way as in previous section. It is worth to underline that it is hard to obtain a good
load distribution ratio as the partitions increases varying from 0.97 for two subdomains to around 0.778–0.84 for 16
subdomains.

Fig. 12 presents the speed-up per conjugate gradient iteration with respect to the sequential ILU (0)-CG solver. As should
be expected, the speed-up is lower than for the pipe flow problem due the larger connectivity between sub-matrices taking
values in the range of 9.5–11 with 16 processors. It can also be observed that the expected increase in parallel efficiency as
the problem becomes larger (increasing NEQ values). Table 8 presents the number of iterations to reach convergence. Con-
trary to the pipe flow case, the number of iterations tends to increase in a more regular fashion with respect to the partitions.
At this stage, it must be remarked that by looking at Table 8 one may notice that NNZ increases by a factor of 2 in going from
mesh 2 to mesh 3 and, in the mean time, the CPU time required to solve increases by a factor of 10. The reason of this lack of
proportionality is that when using Krylov iterative methods for solving the required number of iterations to converge is dif-
ficult to predict. However the CPU time per iteration better scales with NNZ; for example for these two meshes, the CPU time
per iteration almost double, from 1.86s to 3.33s; then the proportionality is more balanced.



Fig. 11. Increase of the number of equations due Lagrange multiplier constraints at the interface for P1+–P0 and P2+–P1 finite element for cavity flow test
case.

Fig. 12. Speed-up per ILU (0) preconditioned conjugate gradient iteration for the cavity flow test case with P1+–P0 and P2+–P1 finite elements.

Table 7
Ratio between minimum and maximum number of NNZ in the subdomains for cavity flow test case.

Processors Mesh1 Mesh2 Mesh3 Mesh1 Mesh2 Mesh3

P1þ—P0 P2þ—P1

2 0.985 0.974 – 0.986 0.976 –
4 0.913 0.976 0.963 0.917 0.978 0.964
8 0.869 0.945 0.902 0.878 0.951 0.908
16 0.779 0.821 0.800 0.804 0.840 0.820
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The overall speed-up with respect to the sequential run is in the range of 5–5.5 for 16 processors (Table 9). The differences
between the iteration speed-up and the overall speed-up are discussed in Section 4.2.2.



Table 8
Number of conjugate gradient iterations to solve the cavity flow test case.

Processors Mesh1 Mesh2 Mesh3 Mesh1 Mesh2 Mesh3

P1þ—P0 P2þ—P1

1 316 432 3076 685 961 1908
2 422 537 Not run 867 1146 Not run
4 487 628 4091 1064 1585 2577
8 523 715 4160 1138 1528 2713
16 587 754 5001 1440 1831 3823

Table 9
Overall speed-up for cavity flow test case (CPU time in seconds in parenthesis).

Processors Mesh1 Mesh2 Mesh3 Mesh1 Mesh2 Mesh3

P1+–P0 P2+–P1

2 1.3 1.4 Not run 1.4 1.6 Not run
(202) (553) (1950) (5134)

4 2.1 2.4 2.5 2.1 2.1 2.5
(131) (332) (4172) (1308) (3661) (12343)

8 3.3 3.7 4.4 3.7 4.0 4.7
(82) (215) (2329) (767) (1971) (6782)

16 5.0 5.5 5.5 5.0 5.8 5.5
(54) (144) (1850) (560) (1374) (5772)

UxUyUz), interface velocity (

I), pressure (

P) and Lagrange multipliers (

LM

)
unknowns for 16 partitions on the cavity flow test case0
4.2.1. Effect of ordering of the variables
As preliminary test it was necessary to known the optimal way to order the unknowns in the system of equations. We

present in Fig. 13 the obtained convergence rates of ILU (0)-CG when 16 partitions are employed for the studied configura-
tions. It is observed that UxUyUz–I–P–LM produces the best results. Similar trends were observed when the number of par-
titions was varied. This is the ordering that is used in next section.
r of internal velocity (
4.2.2. Effect of partitioning schemes
Two factors limit the overall speed-up of the method. The first factor is dealing with the parallel implementation of the

linear algebra where the main parameter to consider is the speed-up per iteration. It is dominated by the parallel efficiency
of the employed parallel algebra operations, where parallel matrix–vector products and ILU preconditioning operations are
the more time consuming as evidenced in Fig. 14. It must be remarked that the ideal linear speed-up is very difficult to ob-
tain due to the unbalanced charge loading when using unstructured meshes.

ILU (0)-CG convergence rate for different orde
Fig. 130



Matrix-vector
product

37%

ILU Preconditioning
60%

Matrix-vector
product

39%

ILU Preconditioning
57%

Fig. 14. CPU time distribution at each conjugate gradient iteration.
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The second factor is dealing with the numerical scalability governed by the number of iterations required to reach con-
vergence. The general trend is that the number of CG iterations increases with respect to partitioning. One cause of this trend
is attributed to the total number of equations growth. It is also expected that the global matrix structure plays a role in the
numerical performance since it affects the quality of ILU preconditioner [45,46]. Figs. 15 and 16 illustrate how the matrix
structure evolves as the number of partitions increases having an impact on the quality of ILU preconditioner. Another factor
that affects the parallel scalability is the smoothness of the interfaces. To observe its effect over the speed-up, a 100 K ele-
ment block structured mesh was discretized by P2+–P1 finite elements. Coordinate recursive bisection was employed pro-
ducing smooth partitions as evidenced in Fig. 17(a) in opposite to the irregular ones presented in Fig. 17(b). This latter
configuration was attained by the coordinate recursive bisection method applying a small perturbation that produces an
irregular subdomain interface shape. It was important to use the same partitioning method to keep the subdomains connec-
tivity unchanged. As can be observed in Fig. 18, the alteration of interface smoothness causes a considerable increase of the
number of iterations. As the interface becomes more irregular, the number of Lagrange multiplier equations increases induc-
ing a decay of the convergence rate.

The convergence rate is also associated with the structure of the global matrix for the already discussed reasons. To dem-
onstrate that we have run some experiments using different partition schemes to solve the cavity flow case. The purpose of
Fig. 15. Matrix non-zero entries for pipe flow test case: (a) 1 domain; (b) 2 domains; (c) 4 domains; (d) 8 domains; (e) 16 domains.



Fig. 16. Matrix non-zero entries for cavity flow test case: (a) 1 domain; (b) 2 domains; (c) 4 domains; (d) 8 domains; (e) 16 domains.

Fig. 17. Partitions generated by recursive bisection technique: (a) smooth interfaces and (b) irregular interfaces.
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Fig. 18. Normalized variation in iterations for cavity flow test case (numbers close to symbols indicate the number of partitions used for each point in the
graph).
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the experiments is that different partition algorithms would produce different amount of multiplier equations and non-zero
matrix entries patterns allowing to check their respective influence. Table 10 shows the obtained results, spectral octasection
with terminal propagation and Kerninghan-Lin smoothing being the one that gives the best results in terms of number of
iterations and overall speed-up (8.9), even faster than the case where smooth interfaces where employed (8.4). When con-
sidering spectral-octasection parallel performance it is interesting to mention that a good speed-up per iteration does not
imply a good overall speed-up. The results confirm that both the amount of Lagrange multipliers and the matrix structure
(average number of adjacent subdomains) influence the overall performance of the method. The data suggests that irregular
subdomains connectivity with large non-smooth interfacial area induces a deterioration of the convergence rate. When com-
paring the performance of spectral methods it appears that the interface smoothing, by Kernighan-Lin heuristics, is critical to
reduce the number of CG iterations. The smoothing action of Kerninghan-Lin rule can be observed in Fig. 19. Furthermore,
the speed-up per iteration remains almost constant for the different schemes studied. Finally, we have run again the cases
presented in Table 6 with this new partitioning strategy (spectral method-Kernighan-Lin refinement- terminal propagation)
to verify the validity of our findings. Table 11 summarizes the new speed-ups for these cases using 16 partitions. They show a
significant improvement with respect to the ones in Table 9 confirming our preliminary observations. It is worth to mention
the results of Klawonn and Widlund [33] who used a similar method applied to elasticity problems over structured grids.
They observed an increase in iterations too and concluded that there is a strong indication that this problem would be cured
by the use of a better block preconditioner as algebraic multigrid instead of ILU. We have demonstrated in this work that this
Table 10
Summary of the speed-ups obtained for the different partitioning schemes investigated of the cavity flow test case when running on 16 processors.

Partition method Refinement Increase in
equations (%)

Average
adjacent
subdomains

Iterations (p)/
iteration (1)

Speed-up/
iteration

Overall
speed-up

CPU time (s)

Spectral-octasection Kernighan-
Lin + Terminal
propagation

19 2.375 1.179 10.5 8.9 427

Coordinate recursive
bisection

Regular interfaces 9 4.375 1.355 11.3 8.4 456

Spectral-octasection Terminal
propagation

20 2.500 1.404 10.9 7.8 484

Spectral-octasection Kernighan-Lin 11 4.250 1.422 10.2 7.2 531

Multilevel-k-way None 7 6.250 1.518 10.8 7.1 536

Spectral-octasection None 11 4.125 2.314 11.3 5.1 754

Coordinate recursive
bisection

Irregular interfaces 27 4.375 3.022 10.1 3.4 1143

Multilevel-octasection Kernighan-Lin 10 7.875 No
convergence

10.0 No
convergence

No
convergence



Fig. 19. Smoothing effect over the interfaces due Kernighan-Lin heuristics for 16 partitions in cavity flow test case: (a) spectral octasection without
Kernighan-Lin; (b) spectral octasection with Kernighan-Lin; (c) spectral octasection and terminal propagation without Kernighan-Lin; and (d) spectral
octasection and terminal propagation with Kernighan-Lin.

Table 11
Overall speed-up obtained for the 16 partition cases described in Table 5.

Mesh Finite
element

v–p equations
(�106)

Increase in
equations (%)

Average adjacent
subdomains

iterations (p)/
iterations (1)

Overall
speed-up

CPU time
(s)

mesh1 P1þ—P0 0.8 21 2.125 1.8 5.5 49
mesh2 1.5 17 1.875 1.5 7.3 108
mesh3 3.0 14 1.875 1.0 10.0 1020

mesh1 P2þ—P1 1.8 19 2.125 1.5 7.5 373
mesh2 3.5 15 1.875 1.4 8.8 900
mesh3 6.7 12 1.875 1.1 11.0 2888
mesh4 13.9 10 1.875 1.4 8.9 6158
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situation can also be controlled by the use of suitable partitioning strategies in the case of unstructured meshes where the
smoothness of the interface and partition connectivity are key parameters to obtain good performance even at the cost of
larger interfacial area.
5. Parallel performance for up to 128 processors

Let us demonstrate herein the potential of the parallel solver on a significantly larger partition and on a different platform.
To assess the parallel performance with a larger number of processors, a flow simulation in a Kenics static mixer is solved on
an unstructured mesh made of as much as 1.25 M tetrahedral finite elements. The details about the flow parameters and
boundary conditions can be found in the work of Heniche and Tanguy [47]. For that purpose, up to 128 processors of a par-
allel cluster with a distributed memory interconnected by an infiniband 4X were employed. The velocity and pressure were



Table 12
Number of iterations, CPU time and relative speed up for the Kenics problem using P1+–P0 and P2+–P1 finite element approximations.

Processors Iterations CPU time (s) Speed-up Iterations CPU time (s) Speed-up

P1+�P0 P2+�P1

2 7034 50,432 1.00 – – –
4 7166 26,599 1.90 – – –
8 7248 13,711 3.68 – – –
16 7089 6851 7.36 3650 13,073 1.00
32 6801 3549 14.21 3643 6738 1.94
64 6999 2166 23.28 3747 3810 3.43
128 6520 1519 33.20 3587 2410 5.42

Fig. 20. Comparison of the parallel efficiency obtained in this work with respect to the ones reported in others works (Table 1).
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approximated with both the P1+–P0 and P2+–P1 finite elements, yielding 9.3 M and 21.5 M of velocity–pressure equations,
respectively. For this case the partitioning strategy developed in the last section was used. The CPU times and speed-ups are
summarized in Table 12. The results demonstrate that the method can be used to speed-up the solution of large scale prob-
lems on large number of processors. It can be remarked that the parallel performance obtained with the distributed memory
computer is better than the one obtained with the shared memory computer used in Section 4. The explanation lies in the
higher traffic in the shared memory computer bus when several processors attempt to access the main memory. The algo-
rithm shows a very good parallel efficiency with respect to the efficiencies reported in the literature as shown in Fig. 20.
However, as the number of processors increases the parallel efficiency decays a typical behaviour of parallel ILU based iter-
ative solvers.
6. Conclusions

The objective of this article was to present a method to parallelize a finite element solver based on domain decomposition
for the simulation of viscous fluid flows. The novelty of the technique is the use of Lagrange multipliers constraints and do-
main decomposition to parallelize the ILU preconditioned CG solver. The advantage of this technique with respect to a stan-
dard ILU parallelization is a reduction on the communication between subdomains. The method was tested over two
benchmark cases (pipe and cavity flow) employing discontinuous pressure finite element approximations (P1+–P0/P2+–
P1) on unstructured tetrahedral grids. It was found that the proposed approach can solve problems around 5–13 times faster
than the sequential ILU-iterative solver running on 16 processors. The speed-up is mainly affected by the load distribution
balance and convergence rate which decays as the number of partitions increases. The ordering of physical variables and
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partitioning strategy are critical to obtain good convergence rate. It was found that UxUyUz–I–P–LM ordering combined to
the spectral octasection with terminal propagation and Kerninghan-Lin smoothing partitioning scheme produced the most
promising speed-up performance. Eventually, this work has shown that the Lagrange multipliers technique can help in the
parallelization of an ILU preconditioned Krylov type solver providing a way to reduce inter-processor communication and
consequently improving the overall parallel efficiency demonstrated for up to 128 processors and on two different platforms
namely distributed and shared memory computers.
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